

AFRL-RI-RS-TR-2008-108
Final Technical Report
April 2008

DYNAMIC SITUATION ASSESSMENT AND
PREDICTION (DSAP) INTEGRATION AND
EXPERIMENTATION FOR C2 R&D

RAM Laboratories, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-108 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

DAWN A. TREVISANI JAMES W. CUSACK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 07 – Feb 08
5a. CONTRACT NUMBER

FA8750-07-C-0091

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

DYNAMIC SITUATION ASSESSMENT AND PREDICTION (DSAP)
INTEGRATION AND EXPERIMENTATION FOR C2 R&D

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
459S

5e. TASK NUMBER
N7

6. AUTHOR(S)

Robert McGraw

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
RAM Laboratories, Inc.
10525 Vista Sorrento Parkway, Suite 220
San Diego CA 92121-2747

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-108

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-1703

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The DSAP concept grew out of John R. Surdu’s Simulation in Operations research project and prototype system (OpSim). There are
two basic functions of the DSAP concept: (1) Dynamic Situation Awareness, and (2) Prediction. The overall concept involves the
use of embedded simulation in an operational environment to support decision makers in the planning process. Providing this
capability allows decision makers to use simulation to assist in planning operations, monitor current operations, determine deviations
from a plan, and predict and determine outcomes of a given plan. The resulting system allows military Commanders to utilize timely
battlefield information to make accurate decisions based on the effects of their plans and the current operational picture while
providing an underlying capability to allow the Commander to dynamically modify an existing plan “on the fly” to address emerging
information detected by sensors or provided by gathered intelligence.

15. SUBJECT TERMS
Dynamic Situation Assessment, DSAP, OpSim, Dynamic Operational Planning, Operational Simulation

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dawn A. Trevisani

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

50
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Table of Contents
1.0 INTRODUCTION..1

1.1 SIGNIFICANCE TO THE AIR FORCE..1

2.0 THE DSAP FRAMEWORK AND PAST EFFORTS ...3

2.1 DSAP CONCEPT OF OPERATIONS...3
2.2 DSAP MULTIREP IMPLEMENTATION AT EFFORT START..4

2.2.1 MultiRepTasker..4
2.2.2 MultiRepRTTasker ...5
2.2.3 MultiRepManager..5
2.2.4 MultiRepGui ..6
2.2.5 MultiRepWorker ..7
2.2.6 Plan Evaluator...8

2.3 UPDATES TO THE INITIAL MRF..11
2.3.1 Updates to the MultiRepRTPEvaluator ...12
2.3.2 MultiRepRTCWorker ...13
2.3.3 MultiRepRTWorker..14

2.4 EXTRACTING DAMAGE RESULTS..16

3.0 UPDATES TO PREDICTIVE OPERATIONS FOR EXERCISE AND EXPERIMENTATION
SUPPORT ..17

3.1 UPDATE OF DSAP AND MRF IMPLEMENTATION FOR PREDICTIVE OPERATIONS..17
3.1.1 Updated DSAP Framework ...17
3.1.2 Updated DSAP Implementation...19

3.2 UPDATED MRF COMPONENTS ...20
3.2.1 MRFTasker ..20
3.2.2 MRF_Manager ..20
3.2.3 DSAP GUI ...22
3.2.4 MRFWorker ...23
3.2.5 Plan Evaluator...25

4.0 DSAP MRF MODIFICATIONS SUPPORTING DYNAMIC SITUATIONAL AWARENESS28

4.1 DYNAMIC SITUATIONAL AWARENESS OPERATION ..28
4.2 MRF COMPONENTS ...28

4.2.1 MRFRtTasker...29
4.2.2 MRFRtWorker..29
4.2.3 MRFCalibratedWorker..29
4.2.4 MRFRtpEvaluator..30

4.3 MODIFICATION OF OBJECTS IN MRF/JSAF..32
4.3.1 Checkpoint/PO Entry File Approach...32

4.4 UPDATED EVALUATION GUIS..33
4.5 SUMMARY..35

5.0 INTEGRATING WITH 3RD PARTY TOOLS...36

5.1 DSAP-STOMP INTEROPERABILITY...37
5.2 MESSAGING BETWEEN DSAP-STOMP ...38

6.0 SUMMARY AND FUTURE WORK ...39

6.1 FURTHER THE EFFORT TO CALIBRATE WITH REAL-TIME DATA ...39
6.1.1 Connect to TMDB ..39
6.1.2 Connect to XML-based Data Sources..40

6.2 IMPROVED INSTALLATION OF DSAP AND THE MRF ..40

ii

6.3 WEB SERVICE IMPLEMENTATION ...40
6.4 GRAPHICAL USER INTERFACE DEVELOPMENT ...40
6.5 RESEARCH AND DEVELOPMENT INTO INTEGRATING AND INTEROPERATING WITH 3RD PARTY MECHANISMS41

6.5.1 Interface Definition..41
6.5.2 Interface Development and Integration ...41

6.6 EXERCISE AND EXPERIMENT SUPPORT41

7.0 BIBLIOGRAPHY ..42

8.0 ACRONYMS ..43

iii

List of Figures
Figure 2-1: Calibrated Real-time Simulation for Estimating Operational State _________________________3
Figure 2-2: Predictive Plan Assessment through Faster-than-real-time Simulation ______________________4
Figure 2-3: The Initial MRF ___4
Figure 2-4: Sequence Diagram for MultiRep TBMCSTasker and TBMCS _____________________________5
Figure 2-5: UML Diagram for Server Component Used for the MultiRepManager ______________________6
Figure 2-6: Activity Diagram for MultiRepManager's ProcessRtp() __________________________________6
Figure 2-7: MultiRep Gui Control Flow__7
Figure 2-8: MultiRep Worker Control Flow for Executing Faster-Than-Real-Time Simulations ___________8
Figure 2-9: Control Flow for MultiRepPlanEvaluator __9
Figure 2-10: The MRF GUI___10
Figure 2-11: Selecting and Issuing a Tasking Script ___10
Figure 2-12: GUI kicking off a JSAF Replication ___11
Figure 2-13: Plan Evaluation Results ___11
Figure 2-14: MRF Updates for Dynamic Situational Awareness Capability ___________________________12
Figure 2-15: RTP Evaluator Modification To Prune Replications____________________________________13
Figure 2-16: RTP Modification to Reflect Tasker Enhancements ____________________________________13
Figure 2-17: Sequence Diagram for MultiRepRTCWorker ___14
Figure 2-18: Sequence Diagram for MultiRepRtWorker ___15
Figure 2-19: Dynamic Situation Assessment Sequence Diagram _____________________________________15
Figure 3-1: DSAP Operational View__17
Figure 3-2: The MultiRep application pattern__18
Figure 3-3: The MultiRep execution flow__18
Figure 3-4: The Updated MRF for this Effort __20
Figure 3-5: UML Diagram for Server Component Used for the MRF_Manager________________________21
Figure 3-6: Class Diagram for WpMultiRepServer ___21
Figure 3-7: Class Diagram for WpMultiRepClient __22
Figure 3-8: DSAP GUI front-end interface - MR_Startup GUI______________________________________23
Figure 3-9: DSAP GUI front-end interface - TaskApp GUI___24
Figure 3-10: MRFWorker Control Flow for Executing Faster-Than-Real-Time Simulations _____________24
Figure 3-11: Control Flow for MRFEvaluator ___25
Figure 3-12: The Evaluator GUI ___26
Figure 3-13: Details information on an evaluation result ___27
Figure 4-1: Dynamic Situational Awareness ___28
Figure 4-2: MRFRtWorker Control Flow for Executing Real-Time Simulations _______________________29
Figure 4-3: MRFCalibratedWorker Control Flow for Executing Real-Time Simulations ________________30
Figure 4-4: Control Flow of MRFCalibratedWorker and MRFRtWorker ____________________________31
Figure 4-5: Control Flow of MRFRtpEvaluator __31
Figure 4-6: Evaluator GUI for Dynamic Situational Awareness _____________________________________34
Figure 4-7: Details for Evaluator GUI with Highlights___34
Figure 5-1: Control Flow for Integrated DSAP-STOMP ___37

1

1.0 Introduction
In order to develop decision science technologies for future Air Operations Centers (AOCs), the
Air Force Research Laboratory (AFRL) has defined a program to conduct and sponsor research
and development of revolutionary decision-support concepts. A goal of this program is to apply
advanced information technologies to promote tactics, techniques and procedures that enable
situational awareness and predictive capabilities for future AOCs. One effort that addresses this
goal involves the development of a Dynamic Situation Assessment and Prediction (DSAP)
Framework. To address predictive analysis of plans in the area of decision support, RAM
Laboratories has developed a DSAP Framework and its underlying Multiple Replication
Framework (MRF) for AFRL/IFSB. A subsequent DSAP implementation provided Operational
Situational Awareness for DSAP through the use of ideal real-time simulation and calibrated
real-time simulation. Both the predictive and dynamic situational awareness implementations of
DSAP leveraged the state of the art in advanced information management techniques in the fields
of simulation, distributed computing, and information management to provide the underlying
functionality to evaluate Commander’s plans and their alternatives using predictive simulation
while calibrating with the real-time Command Control Communications and Computers
Intelligence (C4I) picture. This effort performed additional research into readying DSAP for use
in experimentation and exercise support. This Final Report details efforts of RAM Laboratories
in performing this research.

1.1 Significance to the Air Force
The DSAP concept grew out of John R. Surdu’s Simulation in Operations research project and
prototype system (OpSim). There are two basic functions of the DSAP concept: (1) Dynamic
Situation Awareness, and (2) Prediction. The overall concept involves the use of embedded
simulation in an operational environment to support decision-makers in the planning process.
Providing this capability allows decision makers to use simulation to assist in planning
operations, monitor current operations, determine deviations from a plan, and predict and
determine outcomes of a given plan. The resulting system allows military Commanders to
utilize timely battlefield information to make accurate decisions based on the effects of their
plans and the current operational picture while providing an underlying capability to allow the
Commander to dynamically modify an existing plan “on the fly” to address emerging
information detected by sensors or provided by gathered intelligence.

The DSAP Framework builds on advanced information technologies to provide a predictive
analysis of existing plans and alternatives within the context of the real-time operational picture.
There are five main components of the DSAP Framework: (1) the Multiple Replication
Framework (MRF) that is used for evaluating plans and alternative Courses of Action (COAs)
against campaign objectives on available processors, (2) the Simulation Framework that allows
real-time simulation and faster-than-real-time simulations to be developed in a manner that
calibrates with real-time data and supports rollback/rollforward capabilities that can be used to
track the real-time operational picture, (3) an Optimization Framework that supports plan
generation through the use of simulation-in-the-loop, (4) the simulation component which
simulates plans/COAs and their alternatives in both a real-time and predictive fashion (through
the use of faster-than-real-time simulation, and (5) real-time databases and data feeds. This

2

framework provides the capability to dynamically assess situations, dynamically predict the
outcomes of plans, and will be used to enhance the plan generation process.

RAM Laboratories, with the Air Force Research Laboratory previously developed a prototype
DSAP Framework that provides a predictive capability and dynamic situational awareness
capability. The predictive capability was provided through the use of faster-than-real-time
predictive simulation using JSAF, and real-time data for calibration from the Theater Battle
Management Core System (TBMCS) Air Operations Database (AODB) and Modernized
Integrated Database (MIDB). The dynamic situational awareness capability was provided by
implementing and integrating real-time simulation components with additional real-time
databases and data feeds and the existing predictive analysis capability. This effort enhanced
DSAP for eventual use in an experiment or exercise by streamlining the predictive and dynamic
situational awareness control in order to run both modes simultaneously. The effort also worked
to better segment functionality of MRF components in order to provide an improved plug-and-
play capability and promote re-use of 3rd party evaluation, simulation, and planning
applications/modules.

In addition to the above capabilities, this effort also installed the DSAP Framework in a
laboratory setting to provide a demonstratable capability that can be transitioned to the
operational domain and used as a building block for implementing additional decision-support
technologies.

The subsequent sections of this Technical Report discuss the further implementation of the
DSAP software infrastructure. This work includes implementing the dynamic situational
awareness piece of DSAP in support of operations while also further developing the predictive
analysis functionality. The remainder of this report discusses the following items:

• Section 2.0 discusses predictive capabilities for DSAP operations

• Section 3.0 discusses the design, modification, and implementation of a Multiple Replication
Framework (MRF) to support dynamic situational awareness support for operations.

• Section 4.0 discusses the past efforts on DSAP development.

• Section 5.0 details work performed on this effort to transition DSAP for use on the Global
Information Grid (GIG).

• Section 6.0 outlines future work.

• Section 7.0 provides the Bibliography for this Final Report.

• Section 8.0 defines the acronyms used in developing this report.

3

2.0 The DSAP Framework and Past Efforts
The following describes the past efforts on DSAP work that focused on areas such as
implementing the predictive analysis components and implementing the dynamic situational
awareness component that utilized both a real-time simulation component and a real-time
calibrated simulation component. This section discusses the DSAP Concept of Operation, the
DSAP MultiReplication Framework, and past updates to the framework that have been
implemented as of the start of this effort.

2.1 DSAP Concept of Operations
The Conceptual Operation of the DSAP Infrastructure supports real-time data calibration, real-
time state estimation through simulation, and predictive simulation through faster-than-real-time
simulation. The concepts of operation for the DSAP Infrastructure are shown in Figure 2-1 with
respect to the Dynamic Situation Assessment capability and Figure 2-2 with respect to the
Prediction capability. In Figure 2-1, the xp(t) axis simulates the current plan in real-time. This
real-time simulation is used to simulate the results and internal state of the operational picture.
As this real-time simulation evolves, it is constantly being updated with Blue and Red Force
information from C4I data feeds and databases. These real-time updates, denoted by the z(t) axis,
are provided to the real-time simulation of the current plan to calibrate the behavior of the
simulated COA. This calibrated real-time simulation is used to estimate the state of the real-time
operational picture, xe(t). This allows us to store the internal state, xe(t) of the mission in a
manner that provides our Dynamic Situation Assessment capability.

Figure 2-2 illustrates the predictive capability of DSAP. The individual plans, y(t), can be
idealized and executed out in time. This basically represents the behavior of the plan when the
plan executes as expected. These same plans and their alternatives are then simulated faster-than-
real-time, as denoted by the x(t) axis. By executing these plans faster-than-real-time, we provide
a predictive look into how a plan and its execution may unfold. Multiple plans and multiple
replications of each plan may be executed to provide a statistically significant outlook of a plan’s
anticipated outcomes based on the current operational information. This provides the Prediction
capability.

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

..........

...

...

...
...

Rep 1
Rep 2
Rep N

..

....

Real-time
State Inputs z(t)

xp(t)Real-time
State
Estimator

TBMCS

xe(t)

t

t

...

...

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

............................

.........

......

......
.........

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

..........

Real-time
State Inputs z(t)

xp(t)Real-time
State
Estimator

TBMCS

xe(t)

t

t

......

......

Figure 2-1: Calibrated Real-time Simulation for Estimating Operational State

4

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

..........

...

...

...
...

Rep 1
Rep 2
Rep N

..

....

y(t)Plan
Forecasting

Plan A
Plan B t

...

...

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

............................

.........

......

......
.........

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

..........

y(t)Plan
Forecasting

Plan A
Plan B t

......

......

Figure 2-2: Predictive Plan Assessment through Faster-than-real-time Simulation

2.2 DSAP MultiRep Implementation at Effort Start
The basic of MRF implementation had three types of components: Taskers, Workers, and a
Manager. Taskers were responsible for tasking the manager with applications for workers to run,
and specify how these applications should be initialized. Workers were instructed to complete
the tasks assigned by the manager, including executing the simulation replications, saving the
results of the replications, and evaluating and comparing the results of the replications to the plan
objectives and real-time picture. The manager’s function was to divide the replications into
smaller time segments, assign these tasks to the workers, handle the bookkeeping, and tackle
flow control issues. Each of these components and their connectivity is shown in Figure 2-3.

MR_RTP_Evaluator
(Worker)

MR_Workers

FTRT JSAF
Execution

MR_RT_Worker
RT JSAF
Execution

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MuiltiRepRTPEvaluator
(Worker)(Worker)

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker
RT JSAF
Execution

MultiRepPlanEvaluator
(Worker)(Worker)

MultiRepManager
(Server)(Server)

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

MR_RTP_Evaluator
(Worker)

MR_RTP_Evaluator
(Worker)

MR_Workers

FTRT JSAF
Execution

MR_RT_Worker
RT JSAF
Execution

MR_Plan_Evaluator
(Worker)

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MuiltiRepRTPEvaluator
(Worker)(Worker)

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker
RT JSAF
Execution

MultiRepPlanEvaluator
(Worker)(Worker)

MultiRepManager
(Server)(Server)

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

Figure 2-3: The Initial MRF

2.2.1 MultiRepTasker
The MultiRepTasker component was designed to interface with Command and Control to send a
predictive simulation task to the server. The MultiRepTasker provided connectivity to the server

5

and allowed the user to specify initialization parameters such as the simulation execution name,
initial scenario file, start and end time, simulation scaling rate, and replication number.

2.2.2 MultiRepRTTasker
The MultiRepRTTasker component was designed to issue a task to the server in order to initiate
the real-time worker. The MultiRepRTTasker functions were to provide connectivity to the
server and allow the user to specify the simulation execution name, initial scenario file, name of
the plan the task corresponds to, and the time interval between saving the state of the simulation.

The Real-Time Tasker component, MultiRepTBMCSTasker, was designed to provide the
capability to allow the user to retrieve the Real-Time Picture (RTP) from TBMCS or another C4I
data source via command line or GUI. The sequence diagram defining the operation of the
MultiRepTBMCSTasker is shown in Figure 2-4.

TBMCSTBMCSTBMCS

Query DatabaseQuery Database

ExecuteExecute
QueryQuery

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

Return ResultsReturn Results

Disconnect from DatabaseDisconnect from Database

Connect to DatabaseConnect to Database

AcknowledgementAcknowledgement

TBMCSTBMCSTBMCS

Query DatabaseQuery Database

ExecuteExecute
QueryQuery

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

Return ResultsReturn Results

Disconnect from DatabaseDisconnect from Database

Connect to DatabaseConnect to Database

AcknowledgementAcknowledgement

Figure 2-4: Sequence Diagram for MultiRep TBMCSTasker and TBMCS

The MultiRepTBMCSTasker was designed to be a Tasker component that automates the process
of retrieving real-time C4I information from TBMCS. For TBMCS connectivity, both ODBC
and JDBC were tried. Some problems existed with ODBC and had not been resolved. The
Tasker/JDBC approach to TBMCS connectivity had been implemented and tested.

2.2.3 MultiRepManager
The server, or MultiRepManager, component was designed to be the core of the MRF. The
MultiRepManager was designed to be responsible for 1) managing the execution of long
replications by splicing them in time, 2) constructing the necessary parameters needed for a
worker to launch and save a JSAF execution, 3) constructing the necessary parameters for
launching an evaluation on an evaluator component, 4) displaying diagnostics related to the
execution of multiple replications, 5) identifying when replications are completed, 6) pruning
and re-tasking replications that are off course from the real-time picture, and 7) restarting
unfinished replications in the event of a worker crash or disconnect.

The MultiRepManager design was based on the WpServer used to implement the Extensible
Grid. The Server capability for this effort inherited from the WpNetGridServer, which was the

6

server for the Extensible Grid, which in turn inherited from WpServer, which was the basic
server capability. The UML Class Diagram for the Server design is shown in Figure 2-5.

Figure 2-5: UML Diagram for Server Component Used for the MultiRepManager

The MultiRepManager was designed to be responsible for managing the execution and
evaluation of the replications. The Activity Diagram for the MultiRepManager with respect to
the ProcessRtp() function is shown in Figure 2-6. This Activity Diagram defines the process for
managing the replications through their RTP evaluation.

Evaluation in Progress?Evaluation in Progress?

Evaluations complete?Evaluations complete?
Latest results completeLatest results complete

& beyond & beyond timetimeRtpRtp

Prune RTPsPrune RTPs

Set NumCompleted = 0Set NumCompleted = 0

NoNo
YesYes

NoNo

YesYesYesYes

NoNo

Task Results to GridTask Results to Grid

Copy latest results to RtpMgrCopy latest results to RtpMgr

Determine NumEvaluationsDetermine NumEvaluations

Evaluation in Progress?Evaluation in Progress?

Evaluations complete?Evaluations complete?
Latest results completeLatest results complete

& beyond & beyond timetimeRtpRtp

Prune RTPsPrune RTPs

Set NumCompleted = 0Set NumCompleted = 0

NoNo
YesYes

NoNo

YesYesYesYes

NoNo

Task Results to GridTask Results to Grid

Copy latest results to RtpMgrCopy latest results to RtpMgr

Determine NumEvaluationsDetermine NumEvaluations

Figure 2-6: Activity Diagram for MultiRepManager's ProcessRtp()

2.2.4 MultiRepGui
The MultiRepGui component was designed to provide the user with diagnostics with respect to
operation of the MRF. The MultiRepGui also allowed the user to monitor the status of the MRF.
The Sequence Diagram for the MultiRepGui is shown in Figure 2-7. In addition to simply
monitoring status and setting the time interval for faster-than-real-time simulations, the
MultiRepGui had been modified to host our GUI. The MultiRepGui queried the server to return
the status of replications, provided functionality to modify time intervals and end times, provided

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

7

functionality to modify pruning thresholds, and provided the capability to allow the user to prune
replications or plans using the GUI.

MultiRepManagerMultiRepManagerMultiRepManager

MonitorStatusMonitorStatus
GetsGets
StatusStatus

MultiRepGuiMultiRepGuiMultiRepGui

ReturnStatusReturnStatus

ModifyTimeIntervalModifyTimeInterval
UpdatesUpdates
timeIntervaltimeInterval

GetReplicationStatusGetReplicationStatus
GetsGets
StatusStatusReturnStatusReturnStatus

ModifyEndTimeModifyEndTime
UpdatesUpdates
endTimeendTimeModifyPruningThresholdModifyPruningThreshold
UpdatesUpdates
pruningThresholdpruningThresholdPrune Replication / PlanPrune Replication / Plan
PrunesPrunes
Replication / PlanReplication / Plan

MultiRepManagerMultiRepManagerMultiRepManager

MonitorStatusMonitorStatus
GetsGets
StatusStatus

MultiRepGuiMultiRepGuiMultiRepGui

ReturnStatusReturnStatus

ModifyTimeIntervalModifyTimeInterval
UpdatesUpdates
timeIntervaltimeInterval

GetReplicationStatusGetReplicationStatus
GetsGets
StatusStatusReturnStatusReturnStatus

ModifyEndTimeModifyEndTime
UpdatesUpdates
endTimeendTimeModifyPruningThresholdModifyPruningThreshold
UpdatesUpdates
pruningThresholdpruningThresholdPrune Replication / PlanPrune Replication / Plan
PrunesPrunes
Replication / PlanReplication / Plan

Figure 2-7: MultiRep Gui Control Flow

2.2.5 MultiRepWorker
The Worker component, MultiRepWorker, was designed to receive simulation tasking from the
server, launch predictive JSAF executions that run faster-than-real-time, and launch JSAF
replications faster-than-real-time for a predetermined length of time. The Worker received a
command from the MultiRepManager to launch a JSAF execution which was accompanied by
parameter sets (specifying the SimRate, start time, end time and other variables), environment
variables and scenario spreadsheets. Also, the Worker was designed to pack up results from the
replication execution in spreadsheet format and send the information back to the
MultiRepManager.

Upon completion of the replication, the Worker was designed to save the state of the simulation
to disk and send it to the server for later evaluation and comparison with real-time data and the
plan objectives. Replications that stray from the real-time picture were automatically pruned, re-
tasked by the server, and initialized to match the current state. Replications that failed to meet
the plan objectives could be manually pruned by Command Staff, and if pruned, they were
automatically re-tasked by the server and initialized to match the current state.

8

The Sequence Diagram specifying the operation of the Worker executing faster-than-real-time
JSAF scenarios is shown in Figure 2-8 with respect to the rest of the MRF. This is the heart of
the predictive capability for DSAP/MRF.

MultiRepManagerMultiRepManagerMultiRepManager

ProcessRep() TASKProcessRep() TASK

ManageManage
TaskTask

MultiRepWorkerMultiRepWorkerMultiRepWorkerMultiRepTaskerMultiRepTaskerMultiRepTasker JSAFJSAFJSAF

LoopsLoopsFarm out TasksFarm out Tasks
(if possible)(if possible)

ProcessRep() REQUESTProcessRep() REQUEST

ProcessRep() RESPONSEProcessRep() RESPONSE

Set Environment Variables Set Environment Variables
((execution, startTime, etcexecution, startTime, etc.).)

Reads Envs,Reads Envs,
Runs Exec,Runs Exec,
Saves, &Saves, &
ExitsExits

LaunchesJSAFLaunchesJSAF

MultiRepManagerMultiRepManagerMultiRepManager

ProcessRep() TASKProcessRep() TASK

ManageManage
TaskTask

MultiRepWorkerMultiRepWorkerMultiRepWorkerMultiRepTaskerMultiRepTaskerMultiRepTasker JSAFJSAFJSAF

LoopsLoopsFarm out TasksFarm out Tasks
(if possible)(if possible)

ProcessRep() REQUESTProcessRep() REQUEST

ProcessRep() RESPONSEProcessRep() RESPONSE

Set Environment Variables Set Environment Variables
((execution, startTime, etcexecution, startTime, etc.).)

Reads Envs,Reads Envs,
Runs Exec,Runs Exec,
Saves, &Saves, &
ExitsExits

LaunchesJSAFLaunchesJSAF

Figure 2-8: MultiRep Worker Control Flow for Executing Faster-Than-Real-Time Simulations

At update time boundaries, the real-time simulations running on MultiRepWorker components
were synchronized with the real-time picture (in this case, live or emulated data from the Theater
Battle Management Core System’s (TBMCS) MIDB and AODB, which was updated every
fifteen minutes via subscription). The MultiRepRTTasker or MultiRepTBMCSTasker client fed
real-time information from TBMCS to the system and initiated the update process.

2.2.6 Plan Evaluator
The Plan Evaluator component, MultiRepPlanEvaluator, was designed to compare the state of
the saved faster-than-real-time replications with the plan objectives. The
MultiRepPlanEvaluator was designed to be a Worker that evaluated the results of the JSAF
replication executions against other results. The MultiRepPlanEvaluator took each of the result
spreadsheets and evaluated them to determine the “best” plan. The evaluation was performed by
executing the function PlanEvaulator(). The control flow for the MultiRepPlanEvaluator is
shown in Figure 2-9, when considering the sequence of operations between the
MultiRepPlanEvaluator, MultiRepManager, and MultiRepWorkers. The MultiRepPlanEvaluator
was responsible to request tasks from the server. When results spreadsheets were available at the
MultiRepManager, those results were tasked to the MutliRepPlanEvaluator, which evaluated the
effectiveness of each plan. The effectiveness results were then sent back to the
MultiRepManager, and the MultiRepRTPEvaluator was also tasked to begin evaluating those
results against the current real-time picture.

9

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepWorkerMultiRepWorkerMultiRepWorker MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

Send Task: Send Task: ResultResult
Completed andCompleted and
Validated TaskValidated Task

Return Task: Return Task: ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops

Request Task: Request Task: ResultResult

Send Effectiveness ValuesSend Effectiveness Values

Task RtpEvaluatorTask RtpEvaluator

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepWorkerMultiRepWorkerMultiRepWorker MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

Send Task: Send Task: ResultResult
Completed andCompleted and
Validated TaskValidated Task

Return Task: Return Task: ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops

Request Task: Request Task: ResultResult

Send Effectiveness ValuesSend Effectiveness Values

Task RtpEvaluatorTask RtpEvaluator

Figure 2-9: Control Flow for MultiRepPlanEvaluator

Workers (MultiRepPlanEvaluator and MultiRepRTPEvaluator) were designed to be used in
evaluating the predictive simulation executions with respect to both their objectives and the real-
time picture. The evaluation process was designed to compute both the Raw Effectiveness and
the Relative Effectiveness of each replication. These Measures Of Effectiveness (MOEs) were
used to rank each COA and determine if each plan was consistent with the real-time picture. An
alternative plan might be selected or the existing COA might be maintained depending on its
effectiveness. Also, if the current real-time picture showed that an alternative COA was no
longer valid, that COA could be pruned or replaced by a valid alternative COA. Scenario data
within the MRF’s evaluation process was also updated to reflect changes in assets and resource
status based on real-time picture updates. At that point, the COAs and alternates were once
again farmed out and executed on the available processors.

The initial MRF GUI is shown in Figure 2-10. The GUI was designed to provide a graphical
interactive interface to the MRF that allowed Commanders to task the execution of simulation
plans and replications, view the progress and performance of the plans, and prune ineffective
plans. The graph at the bottom of the GUI was designed to plot the raw and relative
effectiveness of each plan over time. These metrics were used to gauge the effectiveness and
performance of the Commander’s plan.

10

Figure 2-10: The MRF GUI

Plans and replications were initiated in the MRF by issuing a tasking script from the GUI. As
shown in Figure 2-11, a file selector tool was designed to allow the Commander to select a
tasking script to kick off the process. The GUI would be expanded to allow the Commander to
start plans and replications via menus instead of scripts.

After the script had been selected, the MRF took control by sending the task to available
workers, as shown in Figure 2-12.

Figure 2-11: Selecting and Issuing a Tasking Script

11

Figure 2-12: GUI kicking off a JSAF Replication

After the simulation time segment was completed, the MRF was automatically responsible to
perform the plan evaluation and real-time picture evaluation, if the real-time data update was
received. Figure 2-13 shows the plan evaluation results of a replication.

Because of the uncertain nature of predicting the outcome of plans, it was important to execute
multiple replications of a plan and statistically analyze the results. The MRF was responsible to
calculate the mean and standard deviation of the effectiveness values for each time step in the
simulation.

Figure 2-13: Plan Evaluation Results

2.3 Updates to the Initial MRF
The MRF discussed in Section 2.2 provides a predictive analysis capability for C2 through the
use of embedded simulations. Further development was made to the DSAP MRF to provide a
real-time dynamic situational awareness capability on a subsequent effort. These enhancements
entailed using the MRF to simulate the current plan in real-time using two real-time simulations:

12

a real-time simulation of the idealized plan, and a real-time simulation that is constantly
calibrated with TBMCS inputs. These modifications to the MRF architecture, topology, data
flow and sequence of operations are discussed in the following sections.

The effort updated the MRF as shown in Figure 2-14. Here, a Real-time Worker
(MultiRepRTWorker) and a Real-Time Calibrated Worker (MultiRepRTCWorker) are added to
the framework. The MultiRepRTWorker component is responsible for executing the idealized
simulation of the plan using the simulation environment of choice (in our case JSAF). This
simulation is not calibrated with real-time inputs. The intent is for this simulation to play out the
idealized plan based on the state of operations at the plan initiation. The simulated state of
operations for the idealized plan is saved and sent to the MultiRepManager every user-defined
time segment. The implementation is designed to use JSAF’s native damage reporting capability
to store the plan state in comma delimited format. This idealized plan information is used to
compute Real Effectiveness by the MultiRepRTPEvaluator.

The second component implemented is the real-time calibrated worker (MultiRepRTCWorker).
This component is designed to receive real-time updates, and must shut down and restart to
receive and reflect the updates. This process was implemented using JSAF’s checkpoint and
restarted capabilities. Additional work calibrates the real-time worker (and thus the JSAF
simulation) without utilizing a checkpoint restarted process. This approach allows the worker to
receive and reflect the updates while the simulation.

MultiRepRTPEvaluator

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker

RT JSAF
Execution

MultiRepPlanEvaluator

MultiRepManager

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

MultiRepRTCWorker

MultiRepRTPEvaluator

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker

RT JSAF
Execution

MultiRepPlanEvaluator

MultiRepManager

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

MultiRepRTCWorker

Figure 2-14: MRF Updates for Dynamic Situational Awareness Capability

2.3.1 Updates to the MultiRepRTPEvaluator
To implement the real-time capability in support of state estimation, a MultiRepRTPEvaluator
component has been implemented that ensured the RTP Evaluator compared the idealized plan
(simulated on MultiRepRTWorkers) with a calibrated real-time plan (simulated on
MultiRepRTCWorkers). This approach results in several updates to the control flow associated
with the MultiRepRTPEvaluator. The first update, shown in Figure 2-15, adds functionality for
looping through RTP evaluation results, and pruning replications that exceed some (user-

13

specified) threshold. This modified control flow also assumes that the MultiRepRTPEvaluator
has connected to the server. The second modification to this control flow, shown in Figure 2-16,
shows the modified control flow based on changes made to the MultiRepTasker components
which combine the functionality of the emulated TBMCS and TBMCS real-time calibration
process, which is emulated using a flat-file or spreadsheet.

MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

Figure 2-15: RTP Evaluator Modification To Prune Replications

MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

or

MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

or

Figure 2-16: RTP Modification to Reflect Tasker Enhancements

2.3.2 MultiRepRTCWorker
A MultiRepRTCWorker is used to run real-time JSAF executions (or executions of other
simulations) in order to support the state estimation capability in the MRF. The
MultiRepRTCWorker is designed to be responsible for running the real-time simulation, updating
the simulation with TBMCS information (in the case of the calibrated real-time simulation), and
saving checkpoints of the simulation to intermediate results files for effectiveness evaluations.
The sequence diagram of the MultiRepRTCWorker is shown in Figure 2-17. For the

14

MultiRepRTCWorker, the worker is designed to connect to the server and request tasking. The
Tasking, when provided to the server is designed to assign tasks to the server that are passed to
the MultiRepRTCWorker. The MultiRepRTCWorker is responsible to execute JSAF tasks and
send results back to the Server every 15 minutes. In addition, the MultiRepRTTasker is
continually responsible to update the real-time simulation every 15 minutes.

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Connect to Connect to
TBMCS & TBMCS &

Compare to Compare to
ResultResult

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

Send Task: Send Task: RtpRtp

Send Task: Send Task: RtpRtp

CalibrateCalibrate
JSAFJSAF

SaveSave
JSAFJSAF

LoopsLoops

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Connect to Connect to
TBMCS & TBMCS &

Compare to Compare to
ResultResult

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

Send Task: Send Task: RtpRtp

Send Task: Send Task: RtpRtp

CalibrateCalibrate
JSAFJSAF

SaveSave
JSAFJSAF

LoopsLoops

Figure 2-17: Sequence Diagram for MultiRepRTCWorker

2.3.3 MultiRepRTWorker
The MultiRepRTWorker component is designed to execute the idealized plan in real-time. The
MultiRepRTWorker is responsible to behave like the MultiRepRTCWorker and MultiRepWorker
with the exception that the MultiRepRTWorker is not responsible to calibrate with real-time data.
The MultiRepRTWorker saves its state every 15 minutes and sends this information to the server.
The MultiRepRTWorker remains up (does not shut down or terminate) during the execution of
the MRF. The sequence diagram of the MultiRepRTWorker is shown in Figure 2-18.

15

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Loops 15 Loops 15
minutesminutes

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

SaveSave
JSAFJSAF

LoopsLoops

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Loops 15 Loops 15
minutesminutes

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

SaveSave
JSAFJSAF

LoopsLoops

Figure 2-18: Sequence Diagram for MultiRepRtWorker

Once these components were implemented, the control for this dynamic situation assessment
capability was defined and built within the MRF to handle the Real-Time Worker and Real-Time
Calibrated Worker components. The sequence diagram for these capabilities is shown in Figure
2-19.

REQUEST REQUEST TaskTask

MultiRepRtWorkerMultiRepRtWorkerMultiRepRtWorker MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorkerMultiRepManagerMultiRepManagerMultiRepManager
MultiRepTaskerMultiRepTaskerMultiRepTaskerMultiRepRtpTaskerMultiRepRtpTaskerMultiRepRtpTasker

ISSUE ISSUE ResultsResults

ISSUE ISSUE TaskTask

TaskTask RESPONSERESPONSE

CalibrateCalibrate
Task w/ RtpTask w/ Rtp

AdvanceTime()AdvanceTime()

REQUEST REQUEST Results Results && RtpRtp
REQUEST REQUEST TaskTask

TaskTask RESPONSERESPONSE

REQUEST REQUEST RtpRtp

RtpRtp RESPONSERESPONSE

LaunchLaunch
JSAFJSAF

AdvanceTime()AdvanceTime()

ISSUE ISSUE ResultsResults

Results Results && Rtp Rtp RESPONSERESPONSE

ISSUEISSUE EffectivenessEffectiveness

LaunchLaunch
JSAFJSAF

Check forCheck for
ResultResultISSUE ISSUE RtpRtp

ConnectConnect
TBMCSTBMCS

SleepSleep

CompareCompare
Results toResults to
RtpRtp

REQUEST REQUEST TaskTask

MultiRepRtWorkerMultiRepRtWorkerMultiRepRtWorker MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorkerMultiRepManagerMultiRepManagerMultiRepManager
MultiRepTaskerMultiRepTaskerMultiRepTaskerMultiRepRtpTaskerMultiRepRtpTaskerMultiRepRtpTasker

ISSUE ISSUE ResultsResults

ISSUE ISSUE TaskTask

TaskTask RESPONSERESPONSE

CalibrateCalibrate
Task w/ RtpTask w/ Rtp

AdvanceTime()AdvanceTime()

REQUEST REQUEST Results Results && RtpRtp
REQUEST REQUEST TaskTask

TaskTask RESPONSERESPONSE

REQUEST REQUEST RtpRtp

RtpRtp RESPONSERESPONSE

LaunchLaunch
JSAFJSAF

AdvanceTime()AdvanceTime()

ISSUE ISSUE ResultsResults

Results Results && Rtp Rtp RESPONSERESPONSE

ISSUEISSUE EffectivenessEffectiveness

LaunchLaunch
JSAFJSAF

Check forCheck for
ResultResultISSUE ISSUE RtpRtp

ConnectConnect
TBMCSTBMCS

SleepSleep

CompareCompare
Results toResults to
RtpRtp

Figure 2-19: Dynamic Situation Assessment Sequence Diagram

16

2.4 Extracting Damage Results
In addition to developing processes for calibrating real-time simulations using TBMCS, our past
efforts also took steps to store damage and operational state information for the running JSAF
simulations to use in the Raw and Real Effectiveness calculations determined by the
MultiRepPlanEvaluator and MultiRepRTPEvaluator components. This can be accomplished by
adding to the JSAF source code as highlighted in the snippet box below.
void SaveUnitStatus(char *fileName, PO_DATABASE *po_db) {

 if (!po_db) {
 cout << "ERROR: po_db does not exist!" << endl;
 return;
 }

 ofstream outFile(fileName);
 if (!outFile) {
 cout << "ERROR: file " << fileName << " could not be opened!" << endl;
 return;
 }

 cout << "Saving Unit Status..." << endl;
 int i;
 PO_DB_ENTRY *entry;
 time_pause(po_db->save_load_pause_handle);
 outFile << "CALLSIGN,UNIT TYPE,POSITION,LAT,LON,Z,TOTAL,CAPABLE,DAMAGED,DESTROYED"
 << endl << endl;

 for (i=0; i<PO_MAX_OBJECT_CLASS; i++) {
 for (entry = po_db->object_classes[i]; entry; entry = entry->next_class) {
 if (!entry->implied && !entry->deleted) {
 string callsign = (char *)PO_UNIT_DATA(entry).marking.text;
 string type = stdname_get_standard(
 protocol_find_name(PO_UNIT_DATA(entry).objectType));
 if (!callsign.empty() && type != "Constant Unknown") {

 struct usg_sub_counts usc;
 usc.total = 0;
 usc.capable = 0;
 usc.damaged = 0;
 usc.destroyed = 0;

 unitorg_traverse_tree(entry,
 TRUE,
 UsgAddVehicle,
 (UNITORG_FUNCTION_ARG)&usc);

 LatLonCoordinates ll = GcsToLatLon(PO_UNIT_DATA(entry).location);

 outFile << callsign << ","
 << type << ","
 << UsgGetLocString(PO_UNIT_DATA(entry).location) << ","
 << ll.Lat << ","
 << ll.Lon << ","
 << ll.Z << ","
 << usc.total << ","
 << usc.capable << ","
 << usc.damaged << ","
 << usc.destroyed << endl;
 }
 }
 }
 }

Code Segment 2-1: Code for Extracting Damage and State Results from Running JSAF Simulations

17

3.0 Updates to Predictive Operations for Exercise and
Experimentation Support

RAM Laboratories has developed the DSAP Framework to address predictive analysis of plans
and Courses of Action in order to provide inputs to the operational C2 environment at Air
Operations Centers. This final report reflects on efforts to build on the DSAP Framework and its
Multiple Replication Framework (MRF), while enhancing its underlying infrastructure. These
enhancements seek to provide a dynamic situational awareness capability that can be eventually
used to support exercises and experiments, in addition to working with 3rd party planning and
analysis tools. This section describes these updates.

3.1 Update of DSAP and MRF Implementation for Predictive
Operations

The overall DSAP Framework is built on RAM Laboratories’ underlying Extensible Grid
technology and utilizes Object Request Broker (ORB) concepts. This technology is open source
and has been developed to support a number of defense programs involving the Air Force, Navy,
and Missile Defense agency. An Operational Vies (OV) of DSAP is shown in Figure 3-1.

DSAP
– Workers (W) simulate plans and evaluate results
-- Taskers (T) interact with C2 and connect to C4I
-- Managers (M) monitor control flow

W

DSAP Environment

Network
Communications

(GIG)

C4I DBs
T-BONE

Target List

Location
Tracks

Target
List Order

Unit
Enemy Unit

Mission
ATOs

Tracks

Facilities
ATOs

FrOB
W

W

W

T

T

M

DSAP
– Workers (W) simulate plans and evaluate results
-- Taskers (T) interact with C2 and connect to C4I
-- Managers (M) monitor control flow

W

DSAP Environment

Network
Communications

(GIG)

C4I DBs
T-BONE

Target List

Location
Tracks

Target
List Order

Unit
Enemy Unit

Mission
ATOs

Tracks

Facilities
ATOs

FrOB
W

W

W

T

T

M

Network
Communications

(GIG)

C4I DBs
T-BONE

Target List

Location
Tracks

Target
List Order

Unit
Enemy Unit

Mission
ATOs

Tracks

Facilities
ATOs

FrOB
W

W

W

T

T

M

Figure 3-1: DSAP Operational View

3.1.1 Updated DSAP Framework
The DSAP Framework builds on advanced information technologies, the RAM Laboratories’
Extensible Grid and CORBA technologies. The DSAP Framework and/or underlying MRF
objectives are (1) building high-performance distributed computing applications, (2) integrating
easily into any application domains such as Service Oriented Architecture (SOA), (3) enabling
simple and effective application-level integration with a wide range of interchangeable software
components, and (4) solving problem areas where multiple alternative solutions may need to be

18

examined in a timely manner such as (i) planning effectiveness analysis and prediction, (ii) real-
time simulation for enhanced situational awareness, and (iii) plan optimization problems.

With the fundamental design intact, the MRF went through a major re-architecture in order to
meet the important design goals for supporting the ever-changing, evolving software technology
and promoting plug-and-play of DSAP components

These important design goals for this effort required the framework to (1) be easily adaptable to
many different application requirements, (2) allow for natural decomposition of complex
applications into functional components, (3) migrate responsibility for all application
functionality out of server process and into client processes, and (4) enable development of
applications with a rich assortment of different client agents and outside interfaces such as Web
services, advanced presentation modules, and third-party software component interfaces
(building System-of-Systems).

Figure 3-2: The MultiRep application pattern

Figure 3-3: The MultiRep execution flow

19

Figure 3-2 illustrates the MultiRep application pattern that can be applied using the new
architecture of MRF. There are three agents in the pattern of MRF: Worker, Evaluator, and
Action. The Worker agents are designed to run multiple tasks and replications of tasks
concurrently. The Evaluator agents (formerly a Worker component) are designed to evaluate or
consolidate results and distribute reports. The Action agents (formerly Tasker components) are
designed to perform periodic functions in response to reports. Also, Figure 3-3 illustrates the
general MultiRep execution flow in a repeated cycle for a predictive application.

3.1.2 Updated DSAP Implementation
This DSAP prototype allows multiple replications of a simulation to run concurrently across
parallel and distributed platforms, gather global statistics on the simulations upon completion,
splice simulation executions into shorter runs, and compare simulation results with real-time data
enabling the Commander to make decision on pruning simulations that diverge from the plan
objectives.

3.1.2.1 Predictive Analysis Enhancements
In the MRF, the MRFTasker client functions to kick off the plan evaluation process by tasking
the simulation of replications of COAs and alternate COAs to available MRFWorkers running
JSAF faster-than-real-time. The MRFTasker allows the user to determine which simulation
scenario to run, the scenario execution name, and the start and end time of the simulation.
Objectives for the COA are also specified through the use of the console or the DSAP GUI. The
MRF_Manager functions as the server in that it handles receiving, queuing, and intelligent task
distribution. The MRF_Manager farms out replications for each plan that are run faster-than-
real-time on available processors. When completed, the results of those replications are written
to memory and file system and new replications can begin in that same time slot.

An overview of the current capabilities of the DSAP prototype is discussed as follows, with
reference to Figure 3-4. The MRF serves to farm-out and run multiple replications of plans and
alternative COAs via faster-than-real-time simulation. When real-time updates are available,
state information can be calibrated with real-time C4I inputs, saved and compared with the state
information from the predictive plans. Plan replications that do not meet the plan objectives they
can be pruned and replaced by the Commander through a centralized controller called Evaluator
GUI. Our MRF prototype manages this entire process by utilizing a data source for our real-time
C4I inputs and Joint SemiAutomated Forces (JSAF) as both the real-time and faster-than-real-
time simulation components. JSAF was selected as our simulation component because of its
ability to simulate a Joint Urban Operations (JUO) environment (as well as theater operations) as
well as its enhanced support for intelligent ground clutter models, which is the current focus for
the Air Force sponsor. It should also be noted that other simulations can be used as the
simulation component depending on the desired application.

20

Figure 3-4: The Updated MRF for this Effort

3.2 Updated MRF Components
As before, the MRF has three basic types of components: Taskers, Workers, and a Manager.
Taskers function to task the manager with applications for workers to run, and specify how these
applications should be initialized, and prune unsuccessful replications or plans. These are how
hosted on “Action” agents (see Figure 3-3). Two types of Workers are used. “Work” agents are
Workers that complete the tasks assigned by the manager, including executing the simulation
replications, and saving the results of the replications. “Evaluation” agents are Workers that are
responsible for evaluating and comparing the results of the replications to the plan objectives.
The manager tracks time segments of replications, assigns tasks to the workers, and tackles flow
control issues. Figure 3-4 illustrates specific instances of each of these components and their
connectivity with the manager. The role of each of the specific MRF components for this effort
is discussed in the following subsections.

3.2.1 MRFTasker
The MRFTasker component interfaces with Command and Control to send a predictive
simulation task to the server. The MRFTasker provides connectivity to the server and allows the
user to specify initialization parameters such as the simulation execution name, initial scenario
file, start and end time, simulation rate, and replication number.

3.2.2 MRF_Manager
The server, MRF_Manager or WpMRFServer, component is the core of the MRF. The
MRF_Manager is responsible for (1) tracking time segments of replications, (2) constructing the
necessary parameters needed for a worker to launch and save a JSAF execution, (3) constructing
the necessary parameters for launching an evaluation on an evaluator component, (4) identifying

21

when replications are completed, (5) managing the tasking and re-tasking flow control issues,
and (6) restarting unfinished replications in the event of a worker crash or disconnect.

The MRF_Manager design builds off of the WpMultiRepServer used to implement the
Extensible Grid. The Server capability for this effort inherits from the WpNetGridMRFServer,
which is the server for the Extensible Grid, which in turn inherits from WpNetServer, which is
the basic server capability. The UML Class Diagram for the Server design is shown in Figure
3-5.

Figure 3-5: UML Diagram for Server Component Used for the MRF_Manager

Figure 3-6: Class Diagram for WpMultiRepServer

The MRF_Manager is responsible for tracking time segments of replications and managing the
tasking and re-tasking flow control issues. The operations and attributes of the
WpMultiRepServer class that the MRF_Manager inherits can be shown in Figure 3-6. All
Worker application codes must be derived from WpMultiRepClient as shown in Figure 3-7.

22

Figure 3-7: Class Diagram for WpMultiRepClient

3.2.3 DSAP GUI
The DSAP GUI component is the front-end component in DSAP. It provides a user-friendly
interface that allows the user to manage and organize the operation of the MRF. The DSAP GUI
consists of two graphical interfaces, MR_Startup and TaskApp. These have been written in
Python and are linked to DSAP libraries in order to interface with other DSAP components. As
shown in Figure 3-8, the MR_Startup is responsible for (1) managing the categorization of
servers and clients by allowing the user to define their execution properties, and (2) launching
servers and clients and displaying their status and results of each execution.

As shown in Figure 3-9, the TaskApp complements the MR_Startup by giving the user the
following capabilities (1) managing the categorization of tasks in the same manner as
MR_Startup does for clients, (2) splicing simulation executions into shorter runs or smaller time
segments, and (3) launching tasks individually or as a whole group and displaying their status
and results.

23

Figure 3-8: DSAP GUI front-end interface - MR_Startup GUI

3.2.4 MRFWorker
The Worker component, MRFWorker, receives simulation tasking from the server and launches
predictive JSAF executions that run faster-than-real-time. The Worker is responsible for
launching JSAF replications faster-than-real-time for a predetermined length of time. The
Worker receives a command from the MRF_Manager to launch a JSAF execution. This
command is accompanied by parameter sets (specifying the SimRate, start time, end time and
other variables), environment variables and scenario spreadsheets. The Worker also packs up
results from the replication execution in spreadsheet format and sends the information to the
MRFEvaluator.

Upon completion of the replication, the Worker saves the state of the simulation to disk and
sends it to the MRFEvaluator for later evaluation and comparison with real-time data and the
plan objectives. Replications that fail to meet the plan objectives can be pruned by Command
Staff using the Evaluator GUI.

The Sequence Diagram specifying the operation of the Worker executing faster-than-real-time
JSAF scenarios is shown in Figure 3-10 with respect to the rest of the MRF. This is the heart of
the predictive capability for DSAP/MRF.

24

Figure 3-9: DSAP GUI front-end interface - TaskApp GUI

Figure 3-10: MRFWorker Control Flow for Executing Faster-Than-Real-Time Simulations

WWppMMRRFFSSeerrvveerr

TTaasskkeerrPPrrooccRReepp(()) TTAASSKK

MMaannaaggee TTaasskk

MMRRFFWWoorrkkeerr MMRRFFTTaasskkeerr JJSSAAFF

LLooooppss FFaarrmm oouutt TTaasskkss
((iiff ppoossssiibbllee))

WWoorrkkeerrPPrrooccRReepp(()) RREEQQUUEESSTT

WWoorrkkeerrPPrrooccRReepp(()) RREESSPPOONNSSEE

SSeett EEnnvviirroonnmmeenntt VVaarriiaabblleess
((eexxeeccuuttiioonn,, ssttaarrttTTiimmee,, eettcc..))

RReeaaddss EEnnvvss,,
RRuunnss EExxeecc,,
SSaavveess,, &&
EExxiittss

LLaauunncchheess JJSSAAFF

WWoorrkkeerrRReeppDDoonnee(()) SSTTAATTUUSS

25

3.2.5 Plan Evaluator
The Plan Evaluator component, MRFEvaluator, is responsible for comparing the state of the
saved faster-than-real-time replication results with the plan objectives. The MRFEvaluator is a
Worker that evaluates the results of the JSAF replication executions; and those results can be
used for evaluating against other results. The MRFEvaluator evaluates each of the result
spreadsheets and sends them to Evaluator GUI for the Commander to take appropriate COAs
such as determining the “best” plan or pruning plan that failed to meet the threshold. The control
flow for the MRFEvaluator is shown in Figure 3-11, when considering the sequence of
operations between the MRFEvaluator, MRF_Manager, MRFWorkers, and Evaluator GUI. The
MRFEvaluator requests tasks from the server. When results spreadsheets are available at the
MRF_Manager, those results are tasked to the MRFEvaluator, which evaluates the effectiveness
of each plan. The effectiveness results are then sent to the Evaluator GUI for the Commander to
analyze which COAs results in the “best” plan.

Workers (one or more of MRFEvaluators) are used to evaluate the predictive simulation
executions with respect to their objectives. The evaluation process computes both the Raw
Effectiveness and the Relative Effectiveness of each replication. These Measures Of
Effectiveness (MOEs) are used to rank each COA and determine if each plan is consistent with
the plan objectives. An alternative plan may be selected, or the existing COA may be maintained
depending on its effectiveness. Also, if an alternative COA is no longer valid, that COA can be
pruned or replaced by a valid alternative COA. Scenario data within the MRF’s evaluation
process is also updated to reflect changes in assets and resource status. At that point, the COAs
and alternates are once again farmed out and executed on the available processors.

Figure 3-11: Control Flow for MRFEvaluator

The Evaluator GUI is shown in Figure 3-12. The GUI provides a graphical interactive interface
to the MRF that allows Commanders to assess the simulation plans and replications, view the
progress and performance of the plans, prune ineffective plans, and issue COAs to correct any
problems. Also, the GUI provides a drill down feature, a Details button after selecting a line
item on the Evaluation Results, to help Commanders in getting more information on the progress

WWppMMRRFFSSeerrvveerr

TTaasskkeerrPPrrooccRReepp(()) TTAASSKK

MMRRFFEEvvaalluuaattoorr MMRRFFWWoorrkkeerr EEvvaalluuaattoorr GGUUII

WWoorrkkeerrPPrrooccRReepp(()) RREEQQUUEESSTT

WWoorrkkeerrRReeppDDoonnee(()) SSTTAATTUUSS

CCoommpplleetteedd
aanndd VVaalliiddaatteedd
TTaasskk

RReessuullttss sseenntt ((llooccaattiioonn aanndd
rreessuullttss ooff ppllaann))

RReessuullttss rreeqquueesstteedd ((llooccaattiioonn
aanndd rreessuullttss ooff ppllaann))

WWoorrkkeerrPPrrooccRReepp(()) RREESSPPOONNSSEE

RReessuullttss rreecceeiivveedd ((llooccaattiioonn
aanndd rreessuullttss ooff ppllaann))

CCrreeaatteess SShhaarreedd
MMeemmoorryy

LLaauunncchheess EEvvaall

SSeennddss EEffffeeccttiivveenneessss VVaalluueess

LLooooppss

TTaakkeess
aapppprroopprriiaattee
CCOOAAss

26

of the plans or in getting more analyses of ineffective plans so that timely, effective decisions
and assessments can be made to select the appropriate COA. These data or metrics can be used
to gauge the effectiveness and performance of the Commander’s plan.

Figure 3-12: The Evaluator GUI

Details information can be viewed by the Commander as shown in Figure 3-13. When a line
item on the Evaluation Results is selected and Details button is clicked, the detailed information
can be used to create various reports such as plan assessments reports to damaged reports.

Because of the uncertain nature of predicting the outcome of plans, it is important to execute
multiple replications of a plan and statistically analyze the results. The MRF calculates the mean
and standard deviation of the effectiveness values for each time step in the simulation. These
mean values and their standard deviations can be fitted using χ2 analysis to obtain time-based
curves that provide trend analysis. The χ2 analysis is used to compare both the simulated and
observed results with the expected results of the plan.

27

Figure 3-13: Details information on an evaluation result

28

4.0 DSAP MRF Modifications Supporting Dynamic
Situational Awareness

The Section 3.0 focused on implementing updates to the predictive analysis components. This
effort focuses on implementing the dynamic situational awareness components and the
modifications that were made to the DSAP framework.

4.1 Dynamic Situational Awareness Operation
Figure 4-1 illustrates the dynamic situational awareness capability of DSAP. This basically
represents scenario of the current plan being simulated in real-time. The real-time simulation, in
our case JSAF, tracks the real-time operational picture, while the calibrated real-time simulation
being updated with Blue and Red Force information via real-time updates or data sources. Real-
time updates are provided to the real-time simulation of the current plan to correct the predicted
behavior of the simulated COA. At specified checkpoints, the updated simulation can be saved
to estimate the state of the real-time operational picture. Based on the decisions regarding these
state-estimation metrics, with respect to plan objectives, the current plan can be pruned or a new
plan can be selected to be used as a replacement.

Figure 4-1: Dynamic Situational Awareness

4.2 MRF Components
For the Dynamic Situational Awareness operation, the MRF also contains three basic types of
components: Taskers, Workers, and a Manager. These also follow the agent structure presented
in Figure 3.3. “Action” agents are implemented as Taskers that function to task the manager with
applications for workers to run, and specify how these applications should be initialized.
“Work” agents are implemented as Workers that complete the tasks assigned by the manager,
including executing the simulations, and saving the results of the simulations. “Evaluation”
agents are implemented as Workers that evaluate and compare the results of the simulations to
the plan objectives. The manager tracks time segments of simulation executions, assigns tasks to

29

the workers, and tackles flow control issues. The connectivity of each of these components for
the Dynamic Situational Awareness operation is the same as shown in Figure 2-6. The role of
each of the specific MRF components for this effort is discussed in the following subsections.

4.2.1 MRFRtTasker
The MRFRtTasker component issues a task to the server to initiate the real-time worker. The
MRFRtTasker provides connectivity to the server and allows the user to specify initialization
parameters such as the simulation execution name, initial scenario file, start and end time,
simulation rate, and replication number.

4.2.2 MRFRtWorker
The Worker component, MRFRtWorker, receives simulation tasking from the server and
launches JSAF executions that run real-time. The Worker is responsible for launching JSAF
replications in real-time for a predetermined length of time. The Worker receives a command
from the MRF_Manager to launch a JSAF execution. This command is accompanied by
parameter sets (specifying the SimRate, start time, end time and other variables), environment
variables and scenario spreadsheets. The Worker also packs up results from the replication
execution in spreadsheet format and sends the information to the MRFRtpEvaluator.

Upon completion of the replication, the Worker saves the state of the simulation to disk and
sends it to the MRFRtpEvaluator for later evaluation and comparison with real-time data and
calibrated data. Replications that fail to meet the plan objectives can be pruned by Command
Staff using the Evaluator GUI.

The Sequence Diagram specifying the operation of the Worker executing real-time JSAF
scenarios is shown in Figure 4-2 with respect to the rest of the MRF. This is the heart of the
situational awareness capability for the DSAP/MRF.

Figure 4-2: MRFRtWorker Control Flow for Executing Real-Time Simulations

4.2.3 MRFCalibratedWorker
The Worker component, MRFCalibratedWorker, receives simulation tasking from the server and
launches JSAF executions that run in real-time. The Worker is responsible for launching JSAF
replications in real-time for a predetermined length of time. The Worker performs calibration

30

that provides real-time updates to a persistent object (PO) that updates locations, creates a new
PO entity, or deletes a PO entity, just to name a few. The Worker receives a command from the
MRF_Manager to launch a JSAF execution. This command is accompanied by parameter sets
(specifying the SimRate, start time, end time and other variables), environment variables and
scenario spreadsheets. The Worker also packs up results from the replication execution in
spreadsheet format and sends the information to the MRFRtpEvaluator.

Upon completion of the replication, the Worker saves the state of the simulation to disk and
sends it to the MRFRtpEvaluator for later evaluation and comparison with real-time data and
calibrated data. Replications that fail to meet the plan objectives can be pruned by Command
Staff using the Evaluator GUI.

The Sequence Diagram specifying the operation of the Worker executing real-time JSAF
scenarios is shown in Figure 4-3 with respect to the rest of the MRF. This is the heart of the
situational awareness capability for the DSAP/MRF.

Figure 4-3: MRFCalibratedWorker Control Flow for Executing Real-Time Simulations

4.2.4 MRFRtpEvaluator
The Plan Evaluator component, MRFRtpEvaluator, is responsible for comparing the state of the
saved real-time replications with the calibrated plan objectives. The MRFRtpEvaluator is a
Worker that evaluates the results of the JSAF replication executions. The MRFRtpEvaluator
evaluates both result spreadsheets of the JSAF launched by the MRFRtWorker and
MRFCalibratedWorker (Figure 4-4) and sends them to Evaluator GUI for the Commander to
take appropriate action. The control flow for the MRFRtpEvaluator is shown in Figure 4-5, and
depicts the sequence of operations between the MRFRtpEvaluator, MRF_Manager,
MRFRtWorker, MRFCalibratedWorker and Evaluator GUI. The MRFRtpEvaluator requests
tasks from the server. When results spreadsheets are available at the MRF_Manager, those
results are tasked to the MRFRtpEvaluator, which evaluates the effectiveness of each plan. The
effectiveness results are then sent to the Evaluator GUI where the Commander can decide if the
plan is meeting its objectives.

Worker (MRFRtpEvaluator) is used to evaluate the situational awareness simulation executions
with respect to their objectives. The evaluation process computes both the Raw Effectiveness
and the Relative Effectiveness of each simulation. These MOEs are used to determine the

31

effectiveness of the plan being simulated. An alternative plan may be selected or the existing
COA may be maintained depending on its effectiveness. Scenario data within the MRF’s
evaluation process is also updated to reflect changes in assets and resource status.

Figure 4-4: Control Flow of MRFCalibratedWorker and MRFRtWorker

Figure 4-5: Control Flow of MRFRtpEvaluator

32

4.3 Modification of Objects in MRF/JSAF
Functions were implemented to allow persistent object (PO) database updates. These functions
create and modify objects in JSAF using the DSAP framework. The update process utilizes the
checkpoint and PO entry file approach. The effort is described in the following subsection.

4.3.1 Checkpoint/PO Entry File Approach
This update process allows the modification of simulation state in JSAF. JSAF (or other
simulations) simulations can be checkpointed at a user-defined point in time. The checkpoint
data is used as the starting point to initialize and bring JSAF to its previous state before it can be
updated or calibrated with real-time information defined in a PO entry file. A script or
application uses data source information of real-time simulations to generate the PO entry file.

The PO entry file is a comma delimited text file. Currently, the PO entry file supports a PO
entry location update and a PO entry deletion. The PO entry location update format takes a form
of a “UPDATE_LATLON” tag, callsign identification, and location (in latitude/longitude, e.g.
N##/##/##.###,E##/##/##.###). The PO entry deletion format takes a form of a “DELETE” tag
and callsign identification.

This approach requires a timely checkpoint and startup process. This approach requires making
specific JSAF API calls. Also, this approach allows specific updates of information that are
relevant to the current simulation. Other PO entries not updated are left intact. The code added
to JSAF source code is shown in the snippet box below.
void ProcessUpdates(char *updatesFile, PO_DATABASE *po_db) {
 FILE *rfd;
 char dataBuffer[256];
 string strData;
 int start, end, count, newpos;
 string strSupportCode;
 string sub_string;
 string callsign;
 string s_lat;
 string s_lon;

 cout << "ProcessUpdates from file: " << updatesFile << endl;

 rfd = fopen(updatesFile, "r");

 if (rfd != (FILE *) NULL) {
 while (fgets(dataBuffer, 256, rfd) != NULL) {
 start = 0;
 end = 0;
 count = 0;
 newpos = 0;

 strData = dataBuffer;

 // Trimming newline character
 newpos = strData.rfind('\n', strData.size());
 if (newpos != (int) string::npos) {
 strData.erase(newpos);
 }
 end = strData.find(",", start);

 if (end != (int) string::npos) {
 strSupportCode = strData.substr(start, end - start);
 start = end + 1;
 count++;

 if (strSupportCode == "UPDATE_LATLON") {

33

 while ((end = strData.find(",", start)) != (int) string::npos) {
 sub_string = strData.substr(start, end - start);

 if (count == 1) {
 callsign = sub_string;
 } else if (count == 2) {
 s_lat = sub_string;
 }

 start = end + 1;
 count++;
 }
 s_lon = strData.substr(start, strData.size() - start);

 cout << "Callsign = " << callsign << endl
 << "Lat = " << s_lat << endl
 << "Lon = " << s_lon << endl;

 float64 lat = (float64) LatLonToDouble(s_lat);
 float64 lon = (float64) LatLonToDouble(s_lon);
 float64 z = (float64) 360;

 po_pause_me(po_db);
 UpdateUnitLocation(callsign, lat, lon, z, po_db);
 cout << "Updated: " << callsign << ": " << lat << "," << lon << endl;
 po_unpause_me(po_db);
 } else if (strSupportCode == "DELETE") {
 while ((end = strData.find(",", start)) != (int) string::npos) {
 start = end + 1;
 count++;
 }
 callsign = strData.substr(start, strData.size() - start);

 cout << "Callsign = " << callsign << endl;

 po_pause_me(po_db);
 DeleteUnit(callsign, po_db);
 cout << "Deleted: " << callsign << endl;
 po_unpause_me(po_db);
 } else {
 cout << "Warning: Not supported code [" << strSupportCode << "] for entry PO
update." << endl;
 }
 }
 }

 fclose(rfd);
 }
}

Code Segment 4-1: Code for Updating PO Entries in JSAF Simulations

4.4 Updated Evaluation GUIs
In addition to the above updates to DSAP’s Dynamic Situational Awareness machinery, this
effort also provided updates to the DSAP Graphical User Interfaces. For Dynamic Situational
Awareness, the Evaluator GUI is shown in Figure 4-6. This version provides evaluation
capabilities that display Calibrated Worker results. These calibrated results are compared against
an idealized plan to see if some threshold as been passed or exceeded. This threshold is
represented by a user-defined cost function.

34

Figure 4-6: Evaluator GUI for Dynamic Situational Awareness

Additional GUI capabilities can be found when examining the Details tab for the Evaluator GUI.
Clicking on this Details tab presents the GUI view shown in Figure 4-7. This graphic represents
the different entities taking part in the idealized real-time plan, in comparison to the calibrated
real-time plan. Entities (denoted by call sign) that are not present in both plans are highlighted in
Cyan. This triggers an alert that keys the generation of new plans (by a 3rd party tool). The
magenta highlights depict differences in position for targets/entities between the plans (ideal and
calibrated). These differences can trigger an alert if their difference in position exceeds some
threshold.

Figure 4-7: Details for Evaluator GUI with Highlights

35

4.5 Summary
This section has detailed the modifications and enhancements performed on this effort to
DSAP’s MRF to support the real-time Dynamic Situational Awareness capability for operational
C2. This effort developed updates to real-time simulation components for the
MRFCalibratedWorker, MRFRtWorker, and MRFRtpEvaluator to support idealized and
calibrated simulations, re-defined the control flow for real-time dynamic situational awareness
applications, and implemented mechanisms to calibrate real-time simulations from data source
inputs.

36

5.0 Integrating with 3rd Party Tools
Several versions of the DSAP Framework have been implemented and installed on systems at
AFRL’s Information Systems Research Branch (IFSB) Command and Control Technology
Center (C2TC). The tasks performed under this effort allow DSAP to execute plans and
alternatives to evaluate “what-if” scenarios, while examining how closely calibrated plans
followed their idealized paths. As part of this effort, RAM Laboratories investigated the process
for integrating DSAP’s Dynamic Situational Awareness mode, and DSAP’s Predictive mode
with 3rd party plan generation tools. Specifically, our efforts investigated the ability for DSAP to
interoperate with Charles River Analytics (CRA’s) STOMP tool. Figure 5-1 depicts an
architecture that was defined in conjunction with AFRL IFSB personnel, AFRL IFSB contractor
personnel, and CRA. The overall control flow for this architecture is as follows:

(1) A plan of the day is selected and executed using DSAP’s Dynamic Situational
Awareness capability. Simulations of this “plan-of-the-day” use JSAF for both the
real-time simulation component and the real-time-calibrated simulation component

(2) AODB and MIDB updates are provided from TBMCS and used to calibrate the real-
time calibrated simulation running on JSAF. It should be noted that the TBMCS
connection was emulated using a flat file (a connection to TBMCS was unavailable)
and calibration mechanisms involved altering positions of entities and/or adding
targets (some high-value in nature).

(3) DSAP’s MultiRepRTPEvaluator was used to generate a threshold comparison that
compared cost functions against one another in support of this thresholding capability

(4) When the threshold was reached, additional plans would be generated by STOMP
based on the current state of the real-time-calibrated simulation when the threshold
was reached.

(5) When plan generation is completed, DSAP’s Predictive mode is then used evaluate
all alternatives using a user-defined cost function (defined by parameter files).

The design and implementation of this architecture would allow is to investigate DSAP’s use in
addressing several objectives, namely

(1) Use of DSAP’s Dynamic Situational Awareness and Predictive modes of operation
within a single control flow

(2) Demonstrating thresholding and comparison on Dynamic Situational Awareness side
(discussed in the previous chapter).

(3) Interoperating with a 3rd party tool, using both Dynamic Situational Awareness and
Predictive modes. This includes passing data between both modes of operation, and

(4) Providing a solution to interoperate in a heterogeneous computing environment
(DSAP is currently executed on Linux platforms while CRA’s STOMP is a Windows
environment).

The following discussion covers some of the lessons learned during this effort with regard to a
design for a DSAP-STOMP integrated system, as well as some of the issues that will have to be

37

addressed in the future. Full integration of DSAP-STOMP was not completed during this effort
due to time limitations.

Figure 5-1: Control Flow for Integrated DSAP-STOMP

5.1 DSAP-STOMP Interoperability
The first issue discussed on this effort involved ensuring that DSAP and STOMP could pass
information (primarily simulation state and plan information) between various tools. At the start
of this effort, DSAP primarily used binary checkpoints for storing and restarting from
operational state data. These checkpoints had been used since the framework evolved to support
JSAF2004. (Initial versions used JSAF5.33b and also had a spreadsheet-based checkpoint restart
capability). When interoperability between DSAP and STOMP was first examined, it was
decided that the most feasibility approach to passing simulation state and plan information was
through comma-delimited spreadsheets. STOMP research had included an effort to export their
plans in comma-delimited format. DSAP had once primarily used comma-delimited formats.
Based on this decision, the spreadsheet-based information store was re-inserted into the DSAP
implementation (although different JSAF2004 functions were used than had previously been
used under the JSAF5 implementation). Re-implementing the spreadsheet capability allowed
DSAP’s Dynamic Situational Awareness mode to save simulation state in comma-delimited
format when a evaluated threshold was exceeded. STOMP could then use this state as a starting
point for its plan development. In addition, STOMP outputted comma-delimited spreadsheets for
its plan and scenario information. These spreadsheets could be read by DSAP’s Predictive mode
to simulate the “what-if” scenarios involving plans and their alternative.

38

5.2 Messaging Between DSAP-STOMP
A second issue that arose in a design for an integrated DSAP-STOMP involved the use of the
proper message passing mechanisms to raise notifications (of a threshold being reached), pass
simulation state, and notify DSAP that STOMP had completed a set of plans and alternatives for
examination. One issue with regard to this messaging or notification process involved the fact
that DSAP is a Linux-based system and STOMP is a Windows based system. To support such
interoperability, it was decided that a web-service message be used for communication. DSAP
could send a notification as a web service when a threshold had been reached (telling STOMP to
start generating new plans). Likewise, STOMP could use a web service to tell DSAP that plans
had been generated in a directory (telling DSAP to start its predictive evaluation of those plans).
One issue that arose was passing simulation state (i.e. scenario) information from DSAP’s
Dynamic Situational Awareness mode to STOMP. DSAP’s comma-delimited checkpoints in this
area have many vacant or null fields in its comma-delimited format. STOMP requires these
fields to be populated for its plan generation process to operate properly. Future efforts that
integrate DSAP and STOMP will have to designate responsibility for providing this information.

In addition to the above issues, STOMP will have to use a web service to notify DSAP that it has
generated a set of plans for analysis in a given directory. As such, the notification must specify
the location of this directory, or the plan information must be stored in a database or directory in
a pre-determined location (which may be tricky in that it must be accessed by both the Windows
based STOMP and the Linux-based DSAP). A potential alternative to this solution would be to
pass all plans and scenario information as a XML-based data model. Subsequent versions of
JSAF, such as JSAF2007, have better capabilities in this area and should be examined to
investigate their ability to support such a feature.

39

6.0 Summary and Future Work
The DSAP Framework is being used to provide a prototype Predictive Analysis and Dynamic
Situational Awareness capabilities for plans derived from Air Tasking Orders (ATOs) and their
alternatives while calibrating those plans with real-time C4I database inputs. The DSAP
Framework utilizes JSAF as both its predictive (faster-than-real-time) and real-time simulation
components, and pulls C4I information from Theater Battle Management Core System’s
(TBMCS) Air Operations Database (AODB) and Modernized Integrated Database (MIDB) as
well as a variety of flat files.

This effort streamlined the control flow for DSAP’s MRF in order to ensure that both predictive
and dynamic situational awareness modes can simultaneously operate on a single platform. In
addition, this effort re-architected the MRF into a Work-Action-Evaluate paradigm (based on
RAM Laboratories’ Extensible Grid) to ensure that additional components could plug-and-play
with DSAP. Such components could be plan generation tools, such as STOMP, plan optimization
tools, evaluation capabilities, and additional simulations and models. Much of the work was
spent moving functionality out of the old DSAP Manager (Server) component and into various
Workers and Taskers. The resulting environment is one that can much more easily support 3rd
party tools, simulations and components, providing an improved DSAP that can be more readily
used in Advanced Concept Experiments or Exercise.

In addition to the above development, the DSAP Framework was installed at AFRL by RAM
Laboratories in May and September of 2007. Additional updates and enhancements were also
provided as patches or clean installs that were performed by AFRL personnel, or AFRL
contractor personnel. This installation and demonstration process resulting in the development of
a variety of tutorials, installation guides, and user documentation to guide the installation and use
process for DSAP. Also, work was spent on developing “installer” capabilities and additional
GUIs to facilitate DSAP use.

To continue to build on successes of our DSAP work, future efforts will focus on using DSAP
with additional models and simulation environments, calibrating with additional data sources,
and support additional evaluation capabilities to include custom Graphical User Interfaces and/or
3rd party COTS/GOTS evaluation and analysis tools. Selections of potential tasks are discussed
in the following paragraphs.

6.1 Further the Effort to Calibrate with Real-Time Data
Current and past DSAP implementations have demonstrated that DSAP can be connected to and
calibrated with data from flat files, spreadsheets, and databases such as Oracle and Sybase. In
particular, DSAP has connected to Oracle and Sybase databases such as AODB and MIDB tables
from an unclassified version of TBMCS. Future efforts will work to implement techniques to
extract data from additional sources including the TMDB and additional data sources to include
the following.

6.1.1 Connect to TMDB
Future efforts can connect the DSAP Framework to the Track Management Database (TMDB)
for the purpose of extracting real-time track data and using that data to calibrate real-time

40

simulations. Subsequent efforts can focus on implementing mechanisms to calibrate DSAP
simulations with TMDB data.

6.1.2 Connect to XML-based Data Sources
Future efforts will work to connect to XML-based data sources. These data sources can be plans
generated by 3rd party plan generation tools, or data models such as the Joint Consultation
Command and Control Information Exchange Data Model (JC3IEDM) to exchange data with
regard to operational state or plan/Course of Action information.

6.2 Improved Installation of DSAP and the MRF
Installation of DSAP requires certain libraries and compilers for Linux platforms. At the tail end
of this past effort, RAM Laboratories developed a DSAP installer that installs DSAP and all its
support libraries (including the Xerces library that was particularly troublesome). Future efforts
will further elaborate upon the install process to ensure DSAP can be installed on platforms
supporting Linux and other flavors of Unix.

6.3 Web Service implementation
This effort entailed working with AFRL personnel and 3rd party contractors (Charles River
Analytics) to define the process for integrating and interoperating DSAP with other 3rd party
tools such as CRA’s STOMP tool. These additional tools may be developed on other operating
systems and utilize other data formats and models for capturing their information. Discussions on
this effort resulted in the decision to use a web service to communicate notifications between
DSAP and 3rd party tools that may use that information. Future efforts will elaborate on this
approach by implementing web services in Java, describing the service using Web Service
Description Language, using XML-based data models (such as C-BML or the JC3IEDM), and
taking advantage of existing registries. As such DSAP can be made into a useful tool (service) on
the Global Information Grid that provides simulation and evaluation services, while taking
advantage of simulation, evaluation, analysis, and plan generation services in additional to web-
service based C4I data sources that can be discovered.

6.4 Graphical User Interface Development
This effort developed GUIs that guide the user in starting, configuring, and managing DSAP
tasks and their corresponding parameters. Additional GUIs were constructed that allowed the
user to visualize evaluation results and “drill down” to “Details” with regard to simulation state.
Real-time evaluation capabilities graphically displayed differences between real-time (idealized)
entities and calibrated entity values. Additional work in GUI development is two-fold: (1)
supporting a capability that allows users to select parameters and entity information for
consideration (which will be reflected back to the running simulations in a manner that will
allow those simulations to capture and save the desired state information), and (2) supporting a
web-based capability that interfaces with Evaluate components (built on Extensible Grid
Workers) that either allows 3rd party analysis users to utilize DSAP simulation capability as a
service, or allows DSAP users to utilize 3rd party services in its evaluation process.

41

6.5 Research and Development into Integrating and Interoperating
with 3rd Party Mechanisms

This effort held discussions with AFRL personnel and contractor personnel with regard to
integrating and interoperating DSAP with 3rd party planning tools (i.e. CRA’s STOMP). The
effort resulted in DSAP being used to read and install STOMP-generated plans from a directory
and execute those plans on available Workers using JSAF as the simulation tool. Discussions on
integrating and interoperating DSAP with STOMP or other 3rd party tools also entailed using a
web service for notification of certain evaluation thresholds being met (for instance, when the
calibrated simulation differs beyond some defined point with respect to the idealized
simulation/plan, such when a previously not-considered high value target appears). Additional
work will entail implementing this web service, in addition to other fields. Based on our
discussions, these fields most likely represented XML-based or comma delimited scenario state
information based on the plan being executed. Specific subtasks that will have to be addressed
are covered in the following paragraphs.

6.5.1 Interface Definition
Future work will involve working with government personnel and selected tool vendors to define
a common interface and API that will enable 3rd parties to work with DSAP. This interface
should support the web-service paradigm and will seek to use and support standard data models
and tools.

6.5.2 Interface Development and Integration
Future work will involve developing mechanisms such as web services that will allow 3rd parties
to use DSAP’s simulation and evaluation capabilities. In addition, interfaces will be developed
that will allow DSAP users to leverage existing 3rd party tools and application on the evaluation
and analysis. An obvious candidate for developing interfaces in this area would be CRA’s
STOMP tool. Developing such an interface will not only demonstrate DSAP’s use in supporting
a web-oriented paradigm, but will also enhance DSAP capabilities by pulling in plan generation
mechanisms.

6.6 Exercise and Experiment Support
Future DSAP efforts will involve participating in exercises and experiments such as the
Advanced Concept Experiment (ACE). Support for these efforts will entail ensuring that DSAP
can be easily installed on platforms at the Experiment/Exercise site, exercise/experiment
participants can be readily trained on using DSAP, techniques or mechanisms are in place to
capture metrics from the experiment/exercise, and an advanced DSAP implementation is
developed that takes into account the scenarios/plans being executed, the simulations being used,
the data sources being used for calibration, the desired simulation state objectives, and the
evaluation and analysis mechanisms that are desired for the exercise and/or experiment.

42

7.0 Bibliography
John R. Surdu. Connecting Simulation to the Mission Operational Environment. Ph.D. Thesis.
Texas A&M University. 2000

Alex F. Sisti. “Dynamic Situation Assessment and Prediction (DSAP)” Proceedings of SPIE,
Enabling Technologies for Simulation Science VII Vol.5091. 2003.

Dr. Paul Phister, Dr. Timothy Busch, and Igor Plonisch. “Joint Synthetic Battlespace:
Cornerstone for Predictive Battlespace Awareness.”

Reaper Jerome, Trevisani Dawn, and Alex Sisti. “Real-Time Decision Support System
(RTDSS)” Proceedings of the Western MultiConference. January, 2003.

McGraw Robert, Lammers Craig, and Steinman Jeff, 2004. “Software Framework in Support of
Dynamic Situation Assessment and Predictive Capabilities for JSB-RD”. In proceedings of the
SPIE - Enabling Technologies for Simulation Science VIII Conference.

McGraw Robert, Lammers Craig, and Trevisani Dawn, 2004. “Dynamic Situation Assessment
and Predictive Capabilities in Support of Operations”. In proceedings of the Fall Simulation
Interoperability Workshop, Orlando, FL. 2004.

McGraw Robert, Lammers Craig, Steinman Jeff, and Trevisani Dawn, 2005. “A DSAP
Framework for the Global Information Grid's Modeling and Simulation Community of Interest”.
In proceedings of the Spring Simulation Interoperability Workshop, San Diego, CA. 2005.

Lammers Craig, McGraw Robert, and Trevisani Dawn, 2005. “Applying a Multireplication
Framework to Support Dynamic Situation Assessment and Predictive Capabilities”. In
proceedings of the SPIE - Enabling Technologies for Simulation Science IX, Orlando, FL. 2005.

Effects Based Operations. Available: http://www.afrlhorizons.com/Briefs/June01/IF00015.html

Theater Battle Management Core Systems (TBMCS). Available
http://jitc.fhu.disa.mil/tbmcs/tbmcs.htm.

Available http://www.mstp.quantico.usmc.mil/modssm2/InfoPapers/INFOPAPER%20JSAF.htm

Numrich, S.K., Hieb, M., and Tolk, A. “M&S in the GIG environment: An Expanded View of
Distributing Simulation” Presented at the Interservice Industry Training Simulation Education
Conference. Orlando, FL. 2004.

http://e-mapsys.com/C2IEDM-MIP_Overview_20Nov2003.pdf

]Steinman Jeff, 2002. “The Standard Simulation Architecture.” In proceedings of the 2002 SCS
Summer Computer Simulation Conference.

Douglas Schmidt. ACE+TAO. Available http://www.cs.wustl.edu/~schmidt/.

Bailey Chris, McGraw Robert, Steinman Jeff, and Wong Jennifer, 2001. "SPEEDES: A Brief
Overview" In Proceedings of SPIE, Enabling Technologies for Simulation Science V, Pages
190-201.

RAM Object Request Broker Programming Guide, Version 1.2, DRAFT.

http://www.afrlhorizons.com/Briefs/June01/IF00015.html
http://jitc.fhu.disa.mil/tbmcs/tbmcs.htm
http://www.mstp.quantico.usmc.mil/modssm2/InfoPapers/INFOPAPER%20JSAF.htm
http://e-mapsys.com/C2IEDM-MIP_Overview_20Nov2003.pdf
http://www.cs.wustl.edu/~schmidt/

43

8.0 Acronyms
ACE Adaptive Communication Environment

AODB Air Operations Data Base

AFRL Air Force Research Laboratory

ATO Air Tasking Order

BML Battle Management Language

C2IEDM Command and Control Information Exchange Data Model

C2IS Command and Control Information Systems

C4I Command, Control, Communications, Computers, and Intelligence

CCSE Common Component Simulation Engine

COA Course Of Action

CORBA Common Object Request Broker Architecture

DSAP Dynamic Situation Assessment and Predictive

FSS Force Structure Simulation

FTRT Faster Than Real Time

GCCS Global Command and Control System

GIG Global Information Grid

GUI Graphical User Interface

IFSB Information Systems Branch

IITSEC Interservice Industry Training Simulation Education Conference

JDBC Java Data Base Connectivity

JDK Java Developer’s Kit

JSAF Joint Semi-Automated Forces

JTIDS Joint Tactical Information Delivery System

JWARS Joint WarGaming System

MIDB Modernized Integrated Data Base

MRF Multiple Replication Framework

MSDL Military Scenario Description Language

NATO North Atlantic Treaty Organization

NCES Network Center Enterprise Services

NCOW Network Centric Operations and Warfare

ODBC Open Data Base Connectivity

44

ORB Object Request Broker

OS Operating System

POC Point of Contact

RT Real Time

RTP Real Time Picture

SATCOM Satellite Communications

SBIR Small Business Innovative Research

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPEEDES Synchronous Parallel Environment for Emulation and Discrete Event
Simulation

TAO The ACE ORB

TBMCS Theater Battle Management Core System

XML Extensible Markup Language

	List of Figures
	1.0 Introduction
	2.0 The DSAP Framework and Past Efforts
	3.0 Updates to Predictive Operations for Exercise andExperimentation Support
	4.0 DSAP MRF Modifications Supporting DynamicSituational Awareness
	5.0 Integrating with 3rd Party Tools
	6.0 Summary and Future Work
	7.0 Bibliography
	8.0 Acronyms

